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SUMMARY 
An iterative type harmonic finite element model is developed for solving the full non-linear form of the 
shallow water equations. The scheme iteratively updates time histories of the non-linear terms which are 
then harmonically decomposed and used as forcing terms for the linear sets of equations which result from 
the harmonic separation of the shallow water equations. 

A least-squares harmonic analysis procedure is used to decompose the non-linear forcing terms. This 
procedure allows for the very efficient separation of extremely closely spaced harmonics, since it is highly 
selective with respect to the frequencies it considers. In addition tailoring the procedure and using very 
specific time steps and sampling periods significantly reduces the number of time samplings points required. 
In conjunction with the iterative nature of our scheme, the least-squares procedure makes the scheme 
entirely general, allows for the direct assessment of all tidal constituents, including compound tides, and 
permits the clear cut and complete investigation of their mutual interaction through the non-linearities. In 
addition this procedure readily computes very-low-frequency or residual type circulations. 

The FE formulation used shows a very low degree of spurious oscillations while remaining quite simple to 
implement. This control on nodal oscillations is especially important due to the energy transfer mechanisms 
involved in this type of iterative scheme. 

In an example application the effects of the various non-linear overtide and compound tide type 
interactions are examined. It is demonstrated that not only are compound tides significant relative to the 
overtides, but they also influence the overtides. 
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INTRODUCTION 

It is well known that the periodic character of tides stems from the highly periodic nature of the 
motion of the celestial bodies whose gravitational forces generate them. In fact tides in the deep 
ocean are described with harmonic constituents whose frequencies are directly associated with 
the motions of the moon and sun relative to the Earth’s surface. Tidal motion is therefore 
represented by the simple linear superpositioning of the harmonic waves associated with these so 
called astronomical constituents. As the tides progress into shallower seas and coastal regions, the 
non-linear terms in the governing equations become significant and the astronomical constituents 
interact through these non-linearities to generate what are referred to as the shallow water tides. 
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The frequencies of these shallow water constituents appear as integer combinations of the various 
astronomical frequencies and are classified as either overtides, which correspond to the gener- 
ation of a response through the non-linearities by one astronomical component, or compound 
tides, which are the result of the non-linear interaction between two or more astronomical 
constituents. Only a limited number of shallow water tides are of importance, since their 
amplitudes generally decrease significantly as energy spreads to higher-order harmonics. Thus 
owing to the highly periodic nature of the tidal phenomenon, harmonic procedures present 
themselves as an intrinsically natural framework within which tides can be studied. In fact 
analytical harmonic or frequency domain solutions have been used in tidal forecasting for more 
than a century.' 

Harmonic methods eliminate the time dependence from the governing shallow water equations 
and produce sets of quasi-steady equations for each of the frequencies present in the tidal 
spectrum at the site of interest. In deep water these sets of equations are uncoupled and 
independent, whereas in shallow water they are coupled and interdependent owing to the non- 
linearities. Hence the application of harmonic methods in shallow waters requires the lineariz- 
ation of the governing equations such that the covpling between the various component 
equations is retained. This is an especially difficult task when considering the important bottom 
friction terms. 

Upon the advent of the computer era, harmonic methods were abandoned in favour of schemes 
which discretize the governing shallow water equations in space and time using finite difference 
(FD) and later finite element (FE) methods. These methods are quite straightforward to apply and 
make it possible to perform computations in arbitrarily shaped embayments. 

Revived interest in the harmonic approach has recently come about due to the inherent 
advantages offered by working in the frequency domain when periodic phenomena are being 
considered. To this end a number of modellers2-5 have been using harmonic methods as an 
alternative to time-stepping methods while retaining the flexibility offered by a FD or FE 
discretization in space. Thus the concept of time marching and the problems associated with it are 
entirely eliminated. However, many of the possibilities offered by this hybrid approach have as yet 
not been fully exploited. The approach allows for the accurate resolution of daily tidal fluctu- 
ations. In addition it readily accounts for beating effects such as spring tide/neap tide variations 
by simple linear superpositioning of closely spaced astronomical components. Furthermore, both 
overtide and compound tide constituents can be computed. Finally, concise and direct assess- 
ments of long-period or residual fluctuations (steady-state, monthly, etc.) in a tidal embayment 
are possible from first principles. Each of the above capabilities has the potential of being 
performed with substantial computational savings over standard time-stepping schemes. These 
savings can be particularly significant when long-period tidal fluctuations are under 
consideration. 

Harmonic methods necessitate that the non-linearities in the governing equations be dealt with 
as linear terms while the associated harmonic coupling between the various constituents is 
accounted for. Strategies to handle this quasi-linearization have consisted of either perturbation 
analyses296 or some type of iterative procedure which treats non-linearities as right-hand-side 
forcings which are updated with every However, early investigators did not take into 
account the generation of compound tides, even though they can constitute a significant part of 
the shallow water constituent spectrum and can indeed play an important role in the correct 
distribution of the entire spectrum. More recently Le has developed a harmonic-based 
FE model which does take into account compound tides. He applies a perturbation analysis and 
a quasi-linearization for bottom friction such that the non-linear coupling between the various 
astronomical constituents can be accounted for. 
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In the development of our harmonic-based tidal circulation model, we have selected an 
iterative approach in conjunction with a harmonic analysis technique based on the rigorous 
application of the least-squares method. The least-squares harmonic analysis method is able to 
extract extremely closely and irregularly spaced frequency information in a very efficient 
manner.'. This entirely general procedure allows for the direct assessment of all the tidal 
constituents, including the compound tides, and permits the clear cut and complete investigation 
of their mutual interaction through the non-linearities. Furthermore, we have included the study 
of the low-frequency end of the shallow water constituent spectrum. The capability of evaluating 
long-period fluctuations, which may be regarded as comprising the Eulerian residual circulation, 
is an especially salient feature which naturally results from our procedure without necessarily 
increasing the computational effort. Finally we have selected the Galerkin FE method to resolve 
the spatial dependence in the governing shallow water equations. We have taken care to 
formulate our numerical solution procedure such that it neither promotes significant spurious 
oscillations nor overdamps the fundamental solution, problems which have plagued numerical 
modellers in the past. Indeed it is vital to the success of our iterative solution procedure to limit 
the extent of spurious oscillations. This is because of the nature of the cascading forcing 
mechanisms which drive the shallow water constituents in our iterative harmonic solution and 
the associated forcing signal-to-noise ratios which could prematurely undermine the integrity of 
the computed higher-order harmonics if severe spurious oscillations were present. In subsequent 
sections we shall describe the details of the harmonic-based FE model TEA-NL (non-linear tidal 
embayment analysis) and illustrate the various non-linear interactions that are caused by the 
finite amplitude and non-linear friction terms for both an overtide and compound tide situation. 

GOVERNING EQUATIONS 

The equations used to describe tidal wave propagation are the shallow water equations which are 
derived by integrating the conservation of momentum and continuity equations over depth and 
are expressed as 

where 

t time 
x7 Y Cartesian co-ordinates 
u, u 
vl 
h depth to MSL 
9 acceleration due to gravity 
f Coriolis factor 
Cf bottom friction coefficient. 

depth-averaged components of velocity in the x, y co-ordinate directions 
surface elevation relative to mean sea level (MSL) 

The non-linearities which cause the coupling between harmonic constituents and are responsible 
for the generation of the shallow water tides consist of bottom friction and convective acceler- 
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ation terms in the momentum equations and finite amplitude effects in both the momentum 
(where they appear in the bottom friction term) and continuity equations. 

The boundary conditions associated with the governing equations are the prescription of 
elevation, q*, and the prescription of normal flux, Q,*, which are respectively expressed as 

Elevation-prescribed boundaries usually coincide with the open ocean boundary, while the 
normal-flux-prescribed boundary typically represents land and river boundaries. It is noted that 
normal flux may be expressed as 

where a,, and a,,, are the direction cosines on the boundary. 

DEVELOPMENT OF THE DISCRETE HARMONIC FORM OF THE 
GOVERNING EQUATIONS 

Our formulation works with the unmodified or so called primitive form of the shallow water 
equations. The scheme used, referred to as the primitive pseudo-wave equation (PPWE) formu- 
lation, shows very well controlled behaviour with respect to nodal oscillations while keeping the 
number of terms to a strict minimum. A detailed description and analysis of the PPWE 
formulation is given by Westerink et ~ 1 . ” .  

Weighted residual formulation 

The PPWE scheme is based on establishing a weak weighted residual form of the continuity 
equation and thus treating elevation-prescribed boundary conditions as essential and normal- 
flux-prescribed boundary conditions as natural. Applying Galerkin’s method, the error in the 
continuity equation is weighted by the variation in elevation, 6q, and is integrated over the 
interior domain R. Furthermore, the natural boundary error is accounted for by weighting the 
error in the normal boundary flux with 6q and integrating over the flux-prescribed boundary TQ. 
It is required that these combined errors vanish and the following expression results: 

” ”  n 

Applying Gauss’s theorem and taking into account relationship (4) and the fact that 6q vanishes 
on the essential boundary leads to the symmetrical weak weighted residual form. Moving the 
non-linear and boundary loading terms to the right-hand side yields 

The weighted residual forms of the momentum equations are obtained by weighting the 
associated errors with the residual velocities and integrating over the interior domain. Again the 
non-linearities are taken to the right-hand side. Furthermore, in order to enhance iterative 
stability, a linearized friction term is included on both sides of each equation. Finally, both 
equations are multiplied through by depth to allow for symmetry in the derivative matrices which 
will appear in both the discretized continuity and momentum equations. With these modifi- 
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cations the weighted residual forms of the momentum equations appear as 

~SS~hu,c+ghr l ,y+~hu+lu)GudR= GudR. (8) 

Equations (6H8) serve as the basis of the FE formulation. All non-linear terms appear on the 
right-hand sides, where they can be conveniently updated with each iteration as non-linear force 
loadings to a linear problem. 

Application of the jinite element method 

In order to generate a system of algebraic equations from integral equations, the FE method is 
applied to the final form of the weighted residual equations. To satisfy the minimum functional 
continuity requirements on the variables, interpolating bases with at least Co functional conti- 
nuity must be used for the FE approximations. Identical type and order bases are used for the 
dependent variables, elevation and velocities. In addition the same elemental approximations are 
used for prescribed normal flux, mean water level depths, bottom friction coefficient and 
linearized friction factor as are used for the dependent variables. In this manner the dependent 
variables and the parameters will all be defined at the same set of nodes. Thus the variables and 
parameters may be expressed within each element in the following form: 

(9) 4x7 Y ,  t )  = M X ?  y)a'"'(t) 

where 

4x7 Y, t )  

Mx7 Y) 
a(")(t) 

representative variable which stands for u, u, q, h, 1, cf and the variations Gu, 60 
and 6q 
elemental vector of Co interpolating polynomials 
elemental vector of nodal values for the representative variable. 

Substituting the elemental expansions of the form (9) into (6)48), summing over all the elements 
within the domain and accounting for the arbitrary variation of Gu, 60 and Gq leads to a set of 
non-linear algebraic equations which constrain the weighted error incurred in the continuity and 
momentum equations due to the finite spatial representation of the variables. These global FE 
equations for continuity and momentum are respectively expressed as 

M,q,,-DU=Pf;"+P,"', (10) 

(1 1) M"U,,+MFU+M,U+gDTq=P~'-,,ic-P,,,,, nl 

where 

global elevation vector 
global velocity vector 
global continuity equation coefficient matrix 
global momentum equation mass matrix 
global linearized friction distribution matrix 
global Coriolis matrix 
global load vector for flux-prescribed boundaries 
global load vector for continuity equation finite amplitude effects 
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P;lprric 

P%V 

global load vector containing the difference between linearized friction and full 
non-linear friction terms 
global load vector representing convective acceleration effects. 

Each of these global matrices and vectors is assembled using the appropriate elemental sub- 
matrices and vectors. In particular the various global load vectors are computed using the 
following elemental vectors: 

L J 

For the development of our computer code, TEA-NL, it was felt that the simplicity of linear Co 
bases outweighed the improved accuracy achieved (for the same number of nodes) with higher- 
order elements. Therefore the simplest possible element, the linear triangle, was selected to 
represent the variation of the variables and parameters within each element. 

Spectral decomposition of the governing equations 

The FE technique has eliminated the differential spatial dependence from the shallow water 
equations. However, the resulting systems of equations (10) and (1 1)  remain differentially time- 
dependent. This time dependence is resolved by reducing (10) and (11) to sets of harmonic 
equations which are coupled through the non-linear terms. 

and P&v are all time-dependent 
vectors. It is assumed that these responses and both linear and non-linear load vectors may be 
expressed as harmonic series of the form 

The variables q and U and the loadings P;", P:', 

A(t)=Re 1 Ajei'"jf , 
( j : l -  ) 

where 

A(t) 

A j  

representative vector which stands for the time history of the responses q and U and 
any of the load vectors 
complex amplitudes of the jth harmonic constituent of A(t); both magnitude and 
phase shift are represented 

i ( -  1 ) 1 / 2  
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oj 
N ,  

jth frequency of the spectrum 
number of frequencies required to adequately represent the significant constituents of 
the tidal spectrum. 

Substituting the harmonic series representation for each of the responses and load vectors into 
(10) and (1 1) leads to N ,  sets of time-independent linear systems of equations of the following 
form: 

(17) 

(18) 
It is noted that the natural-flux-prescribed boundary conditions are included in the load 

vectors P::. The essential boundary conditions may also be expressed as a harmonic series of the 
form (16), which leads to a set of essential boundary conditions associated with each set of 
equations (17) and (18) of the form 

iwjM7Qj - DGj = PIin 'IJ + p1 ' I J '  

iojMufij  + MFGj + McO, + gDTfij = EPfricJ - PcOnvJ. A nl 

4, lrq = 4f . (19) 
All sets of equations (17) and (18) are in themselves linear and independent for every frequency 

o, at each specific cycle of the iterative solution procedure. However, the non-linearities do 
couple the various sets of equations between iterative cycles when the non-linear load vectors are 
re-evaluated using the sum of all the updated non-zero responses at the frequencies present in the 
spectrum. The non-linear load vectors are computed as time histories which are then harmon- 
ically decomposed and distributed to various frequencies. 

SOLUTION TO THE LINEAR EQUATIONS 

The harmonic decoupling of the governing equations with the explicit linearization through the 
iterative scheme led to a set of time-independent linear equations (17) and (18) of the same genera 
form for each frequency in the spectrum. These equations form the core of our fully non-lineal 
scheme and must be solved for all the frequencies of importance in the tidal spectrum at each cycle 
of the iteration until convergence is reached. Therefore it is important that the linear core solution 
strategy be not only accurate and free of spurious oscillations but also very efficient. 

The PPWE formulation solves each of these linear sets of equations (17) and (18) by forming a 
pseudo-wave equation with 4 as the basic variable by substituting the discretized momentum 
equation (18) into the discretized continuity equation (17). Thus the momentum equation (18) is 
solved for Uj as follows: 

where 

MTOT=(imjM" + M, + Mc). (21) 

Substituting for aj into the discretized continuity equation produces 

(iojM, 4- gDM;dTDT)qj = - P I i n  'IJ + 'IJ + D6iTdT(e-fricJ - e:,,",). (22)  

The final system matrix of (22) is complex, non-symmetric (since the Coriolis matrix M, is 
contained in AT,,) and has frequency embedded into it. Because of core storage limitations it is 
preferable to reset and resolve the system matrix for each frequency at each cycle of the iteration 
rather than storing the matrix produced for each frequency at the first cycle and using it in 



820 J. J. WESTERINK, J. J. CONNOR A N D  K. D. STOLZENBACH 

subsequent cycles. After solving for qj with (221, we substitute for Q j  into (20) and solve directly 
for fij. 

It is noted that schemes which attempt to generate frequency-independent, symmetrical and 
real matrices require iterative type solution procedures for each linear system of equations (owing 
to linear variable terms having to be moved to the right-hand side to accomplish the desired 
system matrix properties). This iteration for each linear solution is distinct from the iteration 
scheme discussed in the previous section which updated the non-linear terms in the governing 
equations. Schemes which produce system matrices which do not involve frequency w j  are 
desirable in that they eliminate the need to reset and resolve a different system matrix for each of 
the many frequencies required for the fully non-linear solution. However, these procedures 
proved to be impractical for use as linear core solvers due to potential convergence rate and/or 
iterative stability problems. 

The PPWE scheme solves for elevation and velocity sequentially through the formation of the 
pseudo-wave equation. This equation rearrangement provides the potential for significant 
reductions in computational effort when compared with schemes which solve for elevation and 
velocity simultaneously. In order to ensure this improved computational efficiency, the mass 
matrix Mu, the linearized frictional distribution matrix M, and the Coriolis matrix M, must all 
be lumped such that the inversion of M,,, in equations (20) and (22) does not lead to a fully 
populated matrix. Lumping is not required for the continuity equation coefficient matrix M,. In 
fact M, is not lumped in order to improve the phase properties of the PPWE scheme. The 
lumping procedures in effect amount to a spatial redistribution of mass and the linear friction and 
Coriolis forcings onto the nodes. They ensure that the system matrix of (22) remains banded and 
allows for the extremely economical solution of aj as a result of the tridiagonal partitional 
structure of A,,,. Thus the PPWE scheme allows for the efficient linear solution for each of the 
frequencies of importance owing to the fact that the solutions for elevation and velocity have been 
decoupled and owing to the structure of the matrices which result when partial lumping is used. 

Westerink et a/.” apply the PPWE scheme to a set of two-dimensional test problems with a 
geometry consisting of a quarter of an annulus and including a number of different depth 
variations. These applications show that the PPWE scheme leads to excellent solutions exhibiting 
a very low degree of spurious oscillations. This indicates that it is possible to obtain high-quality 
numerical solutions using equal-order interpolation for both elevation and velocities with a 
formulation based directly on the primitive shallow water equations. The extent of spurious 
oscillations is qualitatively similar to that of the semi-implicit method (SIM) formulation of Gray 
and Lynch,’ although it is not quite as well controlled as the wave equation (WE) formulation of 
Lynch and Gray.14 However, the PPWE scheme is a simpler formulation than either the SIM or 
WE formulation since it is based directly on the primitive equations. This simplicity is important 
with regard to the efficiency of the scheme and is especially significant when an iterative non- 
linear formulation such as ours is under consideration. 

The PPWE scheme’s control on spurious oscillations is not directly related to the formation of 
the pseudo-wave equation nor to any similarities with respect to either the SIM or WE schemes. 
In fact it can be readily shown that for a harmonic formulation the SIM and WE schemes are 
identical. It is shown by Westerink et al.” that the PPWE scheme’s success stems entirely from 
the boundary condition treatment for which elevation is taken as an essential boundary condition 
and the flux boundary condition is relaxed and treated as a natural condition. Handling the 
boundary conditions in this fashion is suggested by the formation of the pseudo-wave equation 
which is solved first and has elevation as its basic variable. The success achieved by this novel 
boundary condition treatment emphasizes the importance of the way in which the boundary 
conditions are handled for the primitive equations. It is noted that previous investigations of 
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other alternative boundary condition treatments found that boundary condition treatment was of 
secondary importance to the actual equation formulation in suppressing numerical oscillations 
(e.g. Lynch"). 

SOLUTION TO THE NON-LINEAR EQUATIONS 

The non-linear terms in the shallow water equations have been included as right-hand-side 
harmonic load terms which are updated with information from the previous cycle of our iterative 
procedure. The iterative solution strategy, presented schematically in Figure 1, starts out with the 
assumption that these non-linear loadings are zero. The initial forcings to the system will then be 
entirely linear and consist only of a set of N ,  harmonic elevation-prescribed and harmonic 
normal-flux-prescribed boundary condition components for a set of specified frequencies. The 
frequencies associated with these non-zero boundary conditions may be associated with both 
astronomical tidal frequencies and shallow water tidal frequencies depending on the location, 
depth and geometry of the forcing boundaries. Each of the linear sets of equations (17H19) 
associated with the specified non-zero boundary forcing frequencies are then solved for the given 
geometry. This then yields harmonic solutions for the variables in the form of amplitudes and 
phase shifts at the nodes for each frequency. This allows time histories for the responses in 
elevations and velocities to be generated with (16). Time histories of the non-linear load vectors 
PP'(t), P;'!fri,(t) and P&(t) can now be produced using the response time histories and (13H15). 

As was assumed earlier, these time domain non-linear loadings may be represented approxi- 
mately by a finite harmonic series. The harmonic decomposition of the non-linear forcing vectors 
produces harmonic loadings at some set of N ,  frequencies. We must now examine the refative 
importance of each of these N ,  harmonic non-linear loadings and select only the ones which will 
significantly influence our solutions. Thus we update the set of N ,  frequencies for which the linear 
model is run by including both boundary and non-linear forcing frequencies of importance. It is 
noted that significant non-linear forcing frequencies, which were not present in the initial 
boundary forcing set of frequencies, may appear at either this stage or some later point in the 
iterative process depending on the non-linearity which generates them. Now each of the N ,  linear 
sets of equations is solved for again. Non-linear effects are explicitly included and therefore the 
interactions with other frequencies are accounted for. The entire procedure is repeated until 
convergence is reached. 

Harmonic analysis of the non-linear forcing vectors 

The selection of a harmonic analysis procedure for the non-linear forcing vectors is of vital 
importance for the efficiency, accuracy and generality of our non-linear model. Efficiency is 
determined by the total number of frequencies as well as the total number of time history points 
required for the harmonic analysis procedure. The accuracy and generality of the harmonic 
analysis relate to the type and the detail of harmonic information extracted from a given time 
history record. 

A variety of Fourier harmonic analysis procedures can be applied to convert time history 
loadings to harmonic loadings. Standard Fourier procedures operate with integer multiples of 
some base frequency. Therefore standard Fourier analysis is quite satisfactory when examining 
only one major astronomical tide and its overtides. However, as is seen in Table I and depicted 
graphically in Figure 2, tidal harmonics are not limited to frequencies which are integer multiples 
of some base frequency. Tidal energy is in general irregularly distributed over a wide range of 
frequencies. The harmonic components are extremely closely and unevenly grouped within 
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Input Boundary Conditions 

Ot 

LINEAR CORE SOLUTION I 
i j = l.N Solve (17)-(19) at w j  I ,. h w 

I f '1, and TJ j = l.N .i 
~ Y 

Check convergence 

Generate time history loadings 

En'( t) with (13)-( 15) using 
time history responses 

by including components with 

forcings of importance 

I f oj j = l.N I 
Figure 1. Schematic of iterative non-linear scheme. a;' and P"'(t) generically represent the non-linear load vectors. Solid 
boxes represent important computations which lend themselves to parallel processing with respect to individual frequency 

components, whereas double-lined boxes lend themselves to parallel processing on a nodal basis 
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widely spaced clusters. Hence, in order to obtain sufficient frequency resolution when Fourier 
analysing the non-linear forcing time histories, an extremely small base frequency step is required. 
Corresponding to this very small frequency step is a very large total number of frequencies being 
processed, most of which have no associated tidal energy. With the finer frequency resolution 
comes a requirement for longer time history records and a larger total number of time sampling 
points.'6*'7 Thus standard Fourier analysis methods would be impractical owing to the excessive 
amount of numerical effort required to obtain the frequency resolution needed to separate 
important tidal components. 

An extremely attractive alternative to standard Fourier analysis procedures is the least-squares 
harmonic analysis method.', ''9 '* This procedure consists simply of a common least-squares 
error minimization process which uses a harmonic series as the fitting function. However, the 
procedure is highly selective with respect to the frequencies it considers and in fact the harmonic 
series used only contains frequencies which are known to exist in the time history record. 
Furthermore, the theoretical number of time history sampling points required (for a noise-free 
signal) is equal to only twice the number of frequencies contained in the time history record. 
Therefore unlike standard Fourier procedures the number of time history points is entirely 

Table I. A list of possibly important astronomical (A), 
overtide (0) and compound (C) tidal constituents 

Tide Type Frequency (rad s - l )  Period (h) 

Steady 
Ssa 
MN 
Mm 
SM 
Mf 
01 

PI 
Kl 
2MK, 
2MS2 
N2 
3MSN, 
M, 
2MN2 
L2 
s2 

K2 
MSN, 
2SM, 
MN4 
M4 
MS, 
MK4 
2MN6 

MSN6 
2MS6 

M6 

2MK6 
2SM6 

0 
A 
C 
A 
C 
A 
A 
A 
A 
C 
C 
A 
C 
A 
C 
A 
C 

AIQ 
C 
C 
C 
0 
C 
C 
C 
0 
C 
C 
C 
C 

0~00000000000 
0~00000039821 
0.00000263920 
OW000263920 
000000492520 
0.00000532341 
0.00006759775 
0.00007252294 
0.00007292 1 17 
0~00013519550 
OQO013559371 
0.0001378797 1 
0.0001 3823292 
0.0001405 1892 
O~ooO143 1581 2 
0.0001 43 158 12 
0.00014544412 
0.00014584233 
0~00014808332 
000015036932 
0.00027839863 
0.00028 I03783 
0.00028596304 
0000286361 25 
0.0004 189 1755 
0.00042 155675 
0.000423 84275 
0.00042648 195 
0.00042688017 
000043 140716 

- 

4382.92 
661.31 
661.31 
354.37 
327.88 
25.82 
24.07 
23.93 
12.9 1 
12.87 
12.66 
12.63 
12.42 
12.19 
12.19 
12.00 
11.97 
11.79 
11.61 
6.27 
6.21 
6.10 
6.09 
4.17 
4.14 
4.12 
4.09 
4.09 
4.05 



824 J. J. WESTERINK, J. J. CONNOR AND K. D. STOLZENBACH 

Figure 2. A typical spectrum of harmonic elevation responses within a shallow water estuary showing major astronomi- 
cal and shallow tide constituents 

independent of frequency spacing and resolution. Thus the efficiency of the least-squares 
harmonic analysis stems from its a priori knowledge of the frequency content ofthe tidal spectrum 
(a standard assumption in tidal analysis procedures), in addition to the associated very low 
number of required time sampling points. It is noted that the method of least-squares is essentially 
identical to specialized applications of Fourier methods which are frequency content selective. l 9  

The harmonic least-squares (LSQ) method's ability to extract extremely closely and irregularly 
spaced frequency information in a very efficient manner makes it the ideal method for the analysis 
of tidal records. The method has been used extensively in the harmonic analysis of time history 
records of field-measured tidal elevations. The method is even better qualified for the analysis of 
analytically generated harmonic responses and non-linear forcing histories, since the signals are 
guaranteed to be purely harmonic, containing only the exact predictable frequencies associated 
with a given set of astronomical and shallow water tidal forcing frequencies (i.e. there are no non- 
tidal forcings). Furthermore, in the analytical generation of these time histories the distribution 
and length of record of the time sampling points can be conveniently controlled such that optimal 
accuracy results for a given number of time sampling points. 

In order to harmonically decompose a time history record with values f ( t k )  at time sampling 
points t k ,  k =  1, M ,  and with known frequency content mj ,  j =  1, N ,  the following harmonic series 
is used for the least-squares procedure: 

N 

g( t )  = C (ajcos mj t  + b, sin mjt ) ,  (23) 
j =  1 

where a j  and bj  are the unknown harmonic coefficients. The sums of the squared errors at all 
sampling times between the fitting function g( tk )  and the function being approximated, f ( t k ) ,  is 
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The error minimization is accomplished by setting equal to zero the partial derivatives of E with 
respect to each of the coefficients aj  and b j ,  resulting in 

This leads to a symmetrical system of 2N simultaneous linear equations 

MLSQA = FLSQ 3 (26) 
where 

MLsQ 
A 
FL, LSQ signal vector. 

fully populated least-squares (LSQ) matrix 
vector of unknown coefficients aj ,  bj 

Steady-state components in the signal being analysed simply correspond to a frequency equal to 
zero in the harmonic analysis series (23). This eliminates one row and one column from the matrix 
MLsQ and reduces (26) to a system of 2N-1 equations. In addition, use of a central time origin with 
M evenly spaced points At time units apart (M must now be an odd integer) allows (26) to be 
simplified and separated into two smaller subsystems of equations: one fully populated subsystem 
of N equations for the unknown cosine coefficients aj  which may be expressed as 

where 

sin$M(oi-oj)At sin+M(oi+oj)At 
Mc-LsQ(i’ ’)= M sin$(oi - oj )At  + M sin +(ai + oj)At ’ 

and one fully populated subsystem of N - 1 equations for the unknown sine coefficient bj: 

where 
sin$M(o, - oj)At sin $M(oi + oj)At - 

Ms-LsQ(i”)= Msin$(wi-oj)At Msin$(oi+wj)At’ 
2 k = ( M - l ) / Z  

Fs-LsQ(i)= 1 f ( k A t )  sin oikAt.  
k =  -(M- 1)/2 

It is noted that for diagonal positions the first part of the expressions given for both MC-LSQ and 
MS-LSQ reduce to unity.” 

Since the LSQ matrix (or LSQ submatrices) does not specifically require values off(t), it need 
only be generated and triangularized once in order to analyse any of a number of time history 
signals with the same frequency content. The vector FLsQ must however be reset for each time 
history signal being harmonically analysed. The vector A, which contains the harmonic coeffi- 
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cients being sought, may then be solved for using the triangularized form of MLsQ. Setting up FLsQ 
involves of the order of O( M N )  operations and solving for A involves roughly O ( N z )  operations 
when MLSQ is in its triangularized form. These operations must be performed for every nodal 
point at every cycle of the iterative process. In addition the nodal time history valuesf(tk), which 
for our case are the components of the various non-linear load vectors, must be generated at every 
node for each of the M time sampling points. It is therefore clear that we want to keep the number 
of time sampling points to an absolute minimum. 

For a time history signal for which the entirefrequency content is both known and used in the 
harmonic fitting series, the number of time sampling points required to find (back) the precise 
signal equah twice the number of frequencies in the signal. This ensures that all the equations in 
(26) will be linearly independent, providing that no two sampling times are identical nor that two 
sampling times fall at the same location relative to the overall period of the signal being sampled. 
The fact that, barring round-off errors, the reproduction of the signal is precise may be inferred by 
noting that (25) becomes an identity if f ( t )  is substituted by the original harmonic generating 
signal. 

However, round-off can severely undermine the accuracy of the LSQ procedure. Since, as is 
noted for (25), the contributions to the components of MLsQ are all of the same order, the MLsQ 
matrix does not exhibit the classical ill-conditioning problems associated with using the least- 
squares minimization procedure in conjunction with polynomial fitting functions (i.e. Hilbert 
matrix). Nonetheless, MLsQ may in general be severely ill-conditioned for a given set of fre- 
quencies and time sampling points. The origins of this potential ill-conditioning are most readily 
seen by examining the structure of the LSQ submatrices for the central time origin case. When 
either i(wi-oj)At or 3(o i+oj )At  are in the neighbourhood of or equal to zero, or an integer 
multiple of 71 radians, the denominators of the associated terms in the LSQ submatrices given by 
(27b) and (27e) will be very small (even when the number of time sampling points, M ,  is very large). 
Since all numerators in (27b) and (27e) vary between zero and unity, these small denominators 
result in off-diagonal terms in the matrix which are very large compared with unity. Since the 
diagonal terms are typically of 0(1), this then will lead to very poorly conditioned LSQ 
submatrices. 

However, by carefully selecting the time sampling point spacing At, we can avoid ill- 
conditioning and in fact control the degree of diagonal dominance of the LSQ submatrices. This 
selection process is based on finding At such that the argument of the sine function in the 
denominators of (27b) and (27e), *(mi Ifr o j ) A t ,  is kept as close to 71/2 + nn as possible (where n is 
any integer). Thus we wish to find a At which maximizes p in the following inequality for all 
frequencies in the signal: 

1 1  1 1 1  
2 p 271 2 P  

+ II < - ( ~ i  wj)At < - + - + n, (28) - _ -  

where n is any integer and p is any real number. The At  values which result are typically quite 
large. For cases which we have examined, A t  ranged anywhere from to 8 days, depending on the 
frequency content of the signal. It is stressed that even seemingly small deviations from the 
selected optimal values of At can lead to low p values and thus very poorly conditioned LSQ 
submatrices. 

Once an optimal At  value has been found, we can monotonically increase the value of all 
denominators in the LSQ submatrices by increasing the number of time sampling points, M .  
Increasing M will result in an overall steady increase in diagonal dominance ratios, although 
certain select ranges of M lead to especially high ratios compared with those achieved by other 
nearby values. These optimal M ranges correspond to values of M for which the numerators of 
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the critical terms in the LSQ submatrices will be small. It is noted that since we have fixed At, 
increasing the number of time sampling points corresponds to increasing the sampling period T,. 

The sampling periods T,, which correspond to values of At and M that result in well- 
conditioned diagonally dominant matrices, are typically equal to or greater than the period of 
modulation of the signal. The period of modulation of a signal is obtained by examining its 
frequency content and selecting the maximum value of all periods or synodic periods of the 
harmonic components contained in the signal. The synodic period describes the period of beating 
of two closely spaced frequencies and is computed as 

Even though the described procedures typically require relatively few time sampling points to 
achieve desirable LSQ submatrices, the time sampling periods T, will in general be very large 
since the corresponding At values are large, usually well in excess of a day. The concept of using 
large and very specific At  values in order to reduce computational effort is not new and has 
previously been applied in tidal field data analysis (e.g. Miyazaki2'), although not to the extent 
and with the flexibility possible with our analytically generated signals. Finally it is noted that for 
signals with typical tidal frequencies and for which the entire frequency content is used in the 
sampling series, the (At, M )  pair used need only achieve diagonal dominance and a strongly 
diagonally dominant LSQ matrix is not necessary. Under these circumstances the input signal 
can be exactly recuperated (to within machine accuracy), often using an M value equal to only 
about two to three times the number of frequencies in the input signal. 

The forcing signals generated by the non-linear terms are such that energy is transferred 
indefinitely to overtide and compound tide frequencies. The new frequencies which are generated 
as a result of the non-linear interaction of the various forcing tides through the friction terms 
appear simultaneously at the second cycle of the non-linear iterative solution procedure. The 
finite amplitude and convective acceleration terms tend to progressively spread energy to more 
frequencies as the iteration advances. However, the amount of energy transferred to higher-order 
harmonics becomes increasingly insignificant. Since it is neither possible nor meaningful to 
attempt to consider all the frequencies that energy is spread to, the harmonic series representing 
the non-linear forcings must be truncated, which establishes an order of accuracy for the 
harmonic analysis. 

Neglecting frequencies which are contained in the input signal in the LSQ procedure no longer 
allows the input harmonics to be recuperated exactly. Errors in the sampling series (23) are now 
minimized in the true least-squares sense and an increase in the number of sampling points 
beyond the M = 2N points will be necessary. In general the extent of the error introduced by 
working with truncated sampling series depends on the distribution and spacing of the harmonics 
in the input and sampling signals, the relative magnitude of the amplitudes of the neglected 
harmonics with respect to those being sampled and the noise present in the signal. In our 
analytically generated signals, noise will not be a factor influencing the accuracy of the results, 
since these signals are purely harmonic (with the exception of round-off in the input signal which 
is of no consequence). The only source of significant error in the LSQ analysis of our generated 
non-linear signals is the influence of the constituents omitted from the sampling series. Assuming 
that the LSQ submatrices are now strongly diagonally dominant, the error 6ai for a constituent ai 
due to an omitted constituent a,+ may be approximated as'8321 

sin+M(oi-o,+,)At 
M sin+(wi-o,+ JAt 6a, = 1 
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Thus the error introduced depends on both the amplitude of the missing constituents, uN+ as 
well as on the magnitude of the hypothetical term which would exist in the LSQ submatrix if we 
had included this ( N  + 1)th constituent in our sampling series (i.e. ML,,(i7 N + 1)). 

Hence an accurate solution for a given constituent can only be achieved if the products of the 
terms in the hypothetical LSQ matrix (which corresponds to missing constituents) with the 
missing constituents themselves are small when compared with the constituent being computed. 
This criterion, of course, would be met if our time sampling structure were such that the 
hypothetical LSQ matrix which includes all frequencies in the input signal was very strongly 
diagonally dominant. However, since a theoretically infinite number of frequencies exist in the 
non-linear forcing signals which we are analysing, this criterion is impossible to achieve. The best 
course of action is to carefully consider a limited number of frequencies and attempt to minimize 
the analysis errors by adhering to the following procedure. 

First we must ensure that no significant harmonics are neglected in the sampling series. 
Significant here implies that all harmonics which exist in the input signal, which are larger than 
the smallest harmonic which we want to extract from our input signal, should be included in our 
sampling series. Thus we define N constituents of interest for which the LSQ analysis wil1 be 
performed. These constituents typically correspond to constituents within the threshold of 
possible interest for our flow computations. The next step is to generate a secondary sequence of 
Q frequencies with associated amplitudes smaller than the N harmonics included in our sampling 
series but which we suspect have a large enough product MLsQ(i, j ) a j  for i = 1, N ;  j = N + 1, Q to 
influence any of our N constituents of interest. We now find a (At7 M )  pair such that we obtain a 
sufficiently strong diagonally dominant hypothetical LSQ matrix for our long list of N + Q  
frequencies. Therefore the errors associated with our actual N-constituent LSQ analysis due to 
the Q missing frequencies will be small compared with the amplitudes of the constituents being 
analysed. It is noted that the actual extent of these errors can be controlled by adjusting the 
degree of diagonal dominance. 

Finally we note that there is always the possibility that we have neglected a number of ‘hidden’ 
constituents, beyond the N + Q constituents, which potentially could lead to significant errors. In 
order to check for this possibility and furthermore to obtain a measure of accuracy for each 
constituent actually analysed, we follow a procedure described by Godin.’ ’ Godin’s procedure 
involves harmonically analysing R consecutive sequences of signals each of length T, = A t M  and 
then comparing the results with a ‘long’ signal of length RTsample = A t  R M (made up of the R 
signals of length Ts). Since the same time step At is being used in the large analysis and since R M  
time points are used, the diagonal dominance will be much greater and the associated analysis 
errors much less than for the shorter M-point analysis. The variability in results of the M-point 
analyses compared with the results of the long analysis will give an excellent indication of the 
errors for each analysed constituent and furthermore will give an indication of whether we 
neglected to account for some troublesome hidden constituents. If the errors for certain analysed 
constituents are unacceptable, we can always increase the diagonal dominance of our hypotheti- 
cal LSQ matrix for the N + Q  constituents. If we suspect the existence of important hidden 
constituents, we can attempt to find them and include them in our N + Q analysis and minimize 
their interference. 

We found that as a rough guideline for typical shallow water tidal estuary computations (with 
up to five astronomical and 40 overtide and compound tide constituents included in the non- 
linear generating series) the number of time sampling points needed to produce sufficiently 
accurate results varied roughly between four and ten times the number of frequencies, providing 
that At was properly selected and that no frequencies with significant associated amplitudes 
existing in the input signal were neglected. Since the time steps At are typically quite large (e.g. up 
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to 8 days), this allows for a large sampling period T, (e.g. 10 years) while using very few time 
sampling points (e.g. 400). If we applied standard LSQ methods, which do not optimize the 
selection of the time step and instead simply use At = 1 hour, the same sampling period would 
require at least 100 times more time sampling points and even then would not necessarily lead to 
diagonally dominant matrices nor accurate results. Thus the economy and accuracy realized with 
our tailoring of the LSQ procedure are outstanding and are only possible due to the flexibility we 
have in analytically generating our signals at any point in time. 

Iterative stability and convergence 

The iterative stability of every scheme which solves a system of simultaneous non-linear 
algebraic equations through direct iteration is dependent on the relative importance and 
character of the terms on both the right-hand and left-hand sides of the system of equations. For 
the long tidal waves propagating in a typical shallow coastal embayment, the non-linear friction 
terms have the most pronounced effect of any of the non-linearities on the dynamics of all the 
tides. This is due in part to the effect of the friction terms on the responses at the dominant 
frequency. We note that friction becomes especially important in very shallow embayments with 
rapid velocities. Let us examine the manner in which the non-linear friction term distributes 
energy to other frequencies. We consider the bottom friction term for a one-dimensional case and 
approximate the finite amplitude term by a Taylor series expansion 

Assuming that only one astronomical tide exists upon the first cycle of iteration, we have an initial 
response at only the forcing frequency w1 of 

u = a cos w1 t .  (32) 

Substituting into the dominating term of the Taylor series approximation for friction and 
performing a Fourier expansion, we find that the non-linear forcing will be 

C ~ ~ U ~ U - C ~ I ~ ~ ( O * ~ ~ ~ ~ C O S W ~ ~ + O . ~ ~ ~ ~ C O S ~ C O ~ ~ - O . O ~ ~ ~ C O S  501t-k . . .). (33) 

Hence there are forcing terms at all the odd harmonics of the forcing frequency wl. Equation (33) 
indicates that for the case of a single astronomical forcing tide the major portion of the 
harmonically decomposed friction term is distributed to the main astronomical forcing frequency 
itself. Subsequent cycles of the iterative process will still only generate forcings at the same set of 
frequencies indicated in (33) and the feedback from the overtide harmonics into the main 
frequency component at w1 will not be significant. We note that the qh-’c,lulu term of (31) will 
generate even harmonics (including zero frequency) in the same way that C,(U~U generated odd 
harmonics. However, the relative magnitude of the forcings will be much smaller due to the ratio 
q/h  and furthermore will not involve the forcing frequency ol. 

It can also be shown that for the case of several astronomical forcing tides the dominant tidal 
frequency (typically the M2) will still have the largest forcing contribution from the harmonically 
decomposed non-linear friction term. The magnitude of the non-linear forcing at the dominant 
frequency will be similar to the forcing which will result when only the dominant astronomical 
tide is considered. Hence the harmonic friction term at the dominant frequency may be 
approximated quite well as a linearized friction term. We recall that a spatially varying linearized 
friction factor I was incorporated on both sides of the momentum equations earlier. Thus the 
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iteration occurs about a right-hand-side loading term which equals the difference between a 
linearized friction term and the fully quadratic friction term. 

Proper estimation of 1 is essential for rapid convergence of the non-linear scheme. The best 
convergence rate is achieved by specifying nodal values of 1 which somewhat overestimate the 
actual harmonic non-linear friction term at the dominant frequency. We found that if 1 
underestimated the non-linear friction the process was divergent, whereas if I z  were overestimated 
excessively convergence rates would be very slow. This then suggests that we first estimate 1 to 
match the actual non-linear friction term at the dominant frequency and then multiply it by a 
relaxation factor. The optimal relaxation factor was found to be approximately equal to 1.5, 
which results in nodal values of I being overspecified by a factor of about 1.5 compared with the 
actual harmonic component of the fully non-linear friction term at the dominant frequency at 
convergence. This procedure results in the linear portion of exceeding the non-linear 
portion at almost all frequencies, ensuring positive loadings E-fricJ. This is in fact what controls 
the stability of the iterative scheme. 

Hence optimal convergence rates are achieved by first obtaining good estimates for the nodal 
values of the linearized friction factor 1 and then relaxing these estimates. A convenient way to 
obtain a good local estimate for linear friction i, is to update it for a number of cycles using nodal 
values of cf and amplitudes of velocity responses generated at the dominant frequency. Since the 
dominant tide is typically not substantially affected by other smaller astronomical constituents 
and especially not by shallow water constituents, an excellent estimate of the dominant response 
can be obtained by considering only the dominant response for a number of cycles while updating 
1" in the way described. Le Provost and Rougierg apply this same type of iterative technique to 
obtain a quite accurate response at  the dominant tidal frequency which they then use in their 
perturbation computations to drive the shallow water harmonics. 

Hence at each of the initial linear iterations performed for only the dominant frequency we 
update 2 as follows: 

1( '+' )=0 .5(1( ' )+0 .8488~~l~~ +Oil 0 ' 5 ) ,  (34) 
where A(') represents a nodal linear friction coefficient at cycle i which allows the approximation of 
the harmonic friction term at the dominant frequency; 043488 represents the coefficient of the 
leading term of the Fourier series expansion for the non-linear friction term in (33): ti,, 0, are the 
nodal amplitudes of velocity at the dominant frequency at cycle i. The averaging between 
the value of d at the present cycle and the term involving cf and velocities minimized overshoot 
and undershoot problems that occur with this type of iterative approximation. This procedure 
typically led to a good stable value of 1 and associated dominant responses in about five linear 
cycles, regardless of the initial user-specified values of 1 which are used in the first cycle of 
iteration. We stress that these first five or so cycles of the iteration only involve one frequency 
component and no generation or harmonic decomposition of any non-linear forcing vectors. 
Thus the linear core solution is run only once at each of these initial linear start-up cycles and 
values of 1 are updated using computed responses at the dominant frequency. 

After these initial purely linear iterations, we relax the 1 factors and proceed with non-linear 
iterations by considering the non-linear terms and all frequencies which demonstrate themselves 
to be significant. No further modifications of the linearized friction factor I are implemented. We 
note that by relaxing I only after the end of the last fully linear cycle we speed up our iterative 
process, since in this way the non-linear iteration starts with good estimates of responses at the 
dominant tidal frequency. We recall that these dominant responses are largely responsible for 
driving the shallow water tides either due to the interaction with themselves, other astronomical 
responses or shallow water tidal responses which have previously been generated. We therefore 
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also eliminate substantial overshoot and undershoot problems in our non-linear iterative cycles 
which could have otherwise significantly decreased convergence rates. 

Let us now examine the effect of the finite amplitude terms in the continuity equation on the 
iterative stability of our scheme. As mentioned earlier, the finite amplitude term distributes its 
loading progressively as the iteration proceeds. A forcing tide with a response at o1 generates a 
non-linear finite amplitude forcing at steady state and 20, .  The second cycle of the non-linear 
iteration produces forcings at steady state, ol, 2 0 , ,  3 0 ,  and 40,. However, the non-linear 
forcings at ol, 30,  and 40, are due to the interaction of the relatively small responses at steady 
state and 20, ,  with the more significant responses at 0, or with themselves (i.e. one or both parts 
of the product diGj, where these are the harmonic response amplitudes associated with the various 
frequencies, will be from responses at  steady state or 2~0,). Thus the non-linear forcings will be 
much smaller for these second non-linear cycle harmonics compared with the first cycle 
harmonics, steady state and 2w,, which resulted from the w,  constituent interacting with itself. 
Hence the character of the energy distribution due to the non-linear interaction which occurs 
through the finite amplitude term is distinctly different from the friction term in that the most 
important effects are at frequencies other than the initial forcing frequency and that the 
distribution of energy progresses with each iteration. We note that the dominant frequency will 
not be substantially affected by the finite amplitude terms. Furthermore, as a result of the 
dominant responses having already stabilized at the beginning of the non-linear cycling, the finite 
amplitude term also spreads energy to other frequencies without any overshoot/undershoot 
problems. 

The stability associated with the iterative treatment of the finite amplitude term may be 
inferred from Lambz2 who shows that there are theoretical limitations for iterative schemes for 
this term which relate to the relative size (with respect to the wavelength) of the estuary. Lamb 
shows that when solving for the case of an open ended canal, the solution obtained by treating the 
finite amplitude term by successive approximations will be unstable if 27r(a/h)(x/l)  is not small, 
where x equals the length of the canal, u equals the amplitude of the wave and l equals the 
wavelength. Even though the same difficulty does not necessarily occur for the case of a closed- 
ended canal, the criterion may be viewed as being indicative of potential instabilities. This 
criterion will be largest in very shallow water when the associated wavelength of a given tidal 
component will be the shortest and the ratio u/h will be the largest. Hence the shallower the water 
depth and the higher the amplitude of the tide, the smaller will be the maximum allowable 
theoretical dimension of the basin for iterative stability. However, in general the criterion is well 
met for typical coastal geometries owing to the long wavelengths associated with tidal compo- 
nents. Therefore unless dealing with very shallow and large coastal seas, this potential instability 
will not be a limitation of the method. 

The convective acceleration terms are similar to the finite amplitude terms in the continuity 
equation in the way they distribute energy through the iterative solution procedure. Convective 
acceleration terms become important only in rapidly varying geometries such as narrow tidal 
inlets connecting a wide embayment to the open ocean. We have not investigated the stability of 
the iterative treatment of these terms in the case of strongly convecting flows. It is noted that for 
these cases eddy viscosity terms would most likely also play an important role and would have to 
be taken into consideration. 

So far we have looked at general factors which control stability and some ways of improving 
convergence rates. Let us now address the question of the point at which we can consider the 
solution to have converged. Obviously the computational effort of TEA-NL is directly related to 
the total number of iterative cycles that need to be run. When determining the degree of accuracy 
which the iteration process should achieve, we should consider a number of factors. 
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First of all there is an order of accuracy associated with the FE method used for the spatial 
discretization of the governing equations. This spatial accuracy depends on the grid size and the 
gradients of the variables relative to the grid size. Furthermore, all numerical schemes solving the 
linear harmonic shallow water equations exhibit a certain degree of nodal oscillations in 
the solution computed for elevation and velocity. The nodal oscillations of the PPWE scheme are 
very well controlled and are dependent on the geometry, depth variation and extent of discretiz- 
ation. The accuracy of the computation is not improved by carrying out the iterative accuracy 
beyond the estimated amplitude of these nodal oscillations. 

Furthermore, the non-linear forcings are generated with elevations and velocities which 
contain a certain degree of nodal oscillation. We therefore expect some deterioration in the 
solution achieved at higher-order harmonics. The degree of deterioration depends on the 
magnitude of oscillation relative to the overall magnitude of forcing (signal-to-noise ratio). 
Furthermore, it depends on which of the non-linear terms are included in the analysis and their 
relative importance. Owing to the way in which the finite amplitude and convective terms 
progressively spread energy to higher harmonics through interactions with the non-linear tides 
themselves and owing to the fact that derivatives are involved in these terms, a steady deterio- 
ration in the quality of the results is seec. Hence as energy is cascaded down to higher-order 
harmonics, the nodal oscillations increase because the noise in the forcing at each non-linear 
frequency is somewhat enhanced by the linear computation itself. For the non-linear friction 
forcings this signal/noise effect is less pronounced, since the forcing term does not include any 
derivatives of velocity and furthermore because energy is distributed mainly from the major 
astronomical forcing frequencies to all the non-linear forcing frequencies simultaneously. It is 
important to consider this noise in the non-linear forcings when determining the convergence 
achievable at each of the frequencies. 

Finally we note that there is an order of accuracy associated with the truncation of the 
harmonic series used for the resolution of the time dependence of the governing equations. The 
frequencies taken into consideration are affected to a certain degree by the lack of interaction with 
the missing harmonics. However, the overall accuracy of the computation by not considering this 
interaction is no worse than that achieved by not considering these terms in the first place. Thus 
performing a calculation of the response at a given frequency beyond the estimated percentage of 
the missing non-linear interaction would not be meaningful. In addition there are errors 
associated with the LSQ harmonic analysis procedure itself as a result of the required truncation 
of the sampling series. The degree of accuracy achieved with the harmonic analysis procedure 
depends on a number of factors previously examined. 

The points discussed should be taken into consideration when determining the level of 
accuracy which the iterative process should achieve. This level is case-dependent and also varies 
for each of the frequencies for which the calculations are being performed. Program TEA-NL 
allows the determination of the level of accuracy achieved and the rate of convergence by 
computing a variety of convergence parameters. 

APPLICATION O F  THE NON-LINEAR MODEL 

As an application of the non-linear model, TEA-NL, we shall examine the behaviour of a variety 
of non-linear type interactions which occur in a straight closed-ended shallow channel. The FE 
discretization of the channel is shown in Figure 3. It is 50 km long and 8 km wide and has a depth 
of 5 m. It is open to the ocean on the left side, where the astronomical tides will be applied as 
boundary forcings. It is assumed that a sharp depth discontinuity will cause the open ocean 
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Figure 3. FE discretization of channel geometry 

Table 11. Runs for non-linear interactions examples 
~~ ~ ~ ~~ 

Non-linearities 

Boundary Finite Finite 
forcing amplitude Nonlinear amplitude in 

Case tides in continuity friction friction term 

1 M* Yes No No 
2 M2 No Yes No 
3 M2 No Yes Yes 
4 M2 Yes YeS Yes 
5 M2, N2 Yes Yes Yes 

boundary to fully reflect out of phase any non-linear shallow water tides generated within the 
channel. Hence all shallow water tides will have zero elevation-prescribed boundary conditions 
on the open ocean boundary. The cases examined are summarized in Table 11. 

M ,  astronomical boundary forcing 

Let us first examine a series of cases which demonstrate the influence of the non-linearities on 
those overtides generated as a result of an M, boundary forcing tide. Since no other astronomical 
forcing tides are applied, only overtides are produced and we shall refer to this series of runs ( 1 4 )  
as overtide cases. An M, astronomical forcing tide of 1.0m with no applied phase shift can 
generate the overtides listed in Table 111. All associated overtide frequencies occur at integer 
multiples of the M, frequency. The LSQ harmonic analysis was applied using a central time 
origin with 38 evenly spaced time points distributed over the period of modulation of the signal, 
12.42 hours. This leads to LSQ submatrices with all off-diagonal terms equal to zero and the 
ability to harmonical!y analyse the generated non-linear signals with essentially no errors for any 
of the constituents. 

Case 1 .  The eflect of Jinite amplitude in the continuity equation. First let us examine the 
influence on the generation of overtides of the finite amplitude term in the continuity equation. 
For Case 1 we specify a linearized friction factor of 1 = 0.00270 and the non-linear friction term is 
turned off. The linear friction factor has been chosen to give the same channel-averaged response 
in M, elevation as Cases 2-5 which all have non-linear friction turned on and specified as 
cf =0005. In fact for this case we do not iterate in the purely linear fashion described in the 
previous section to update estimates for 1 based on M, responses and cf values, but we simply 
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Table 111. List of frequencies used for M 2  overtide cases (Cases 1 4 )  

Synodic period 
Tide Frequency (rad s-') Period (h) (days) 

Steady 
M2 
M4 

M8 
Ml,  
M12 
MI4 

MI 8 

M6 

M 1 6  

0~000o0000000 
O~OOO1405 1892 
0.00028103783 
OW0421 55675 
0.00056207567 
OW070259459 
O~OOo843 1 1350 
090098363242 
0~00112415134 
0.00126467025 

- 

12.42 
6.21 
4.14 
3.1 1 
2.48 
2.07 
1.77 
1.55 
1.38 

0.00 
0.52 
0.52 
0.52 
0.52 
0.52 
0-52 
0.52 
0.52 
- 

work with a globally constant user-specified value. We note from curves 1 in Figures q b )  and (c) 
that the M, component elevation amplitude is increasingly damped and phase lag increases as we 
progress further into the channel. 

Table IV lists the channel-nodal-averaged amplitudes of the harmonic non-linear finite ampli- 
tude forcing components for the continuity equation, P,, , and the non-linear friction forcing 
components for the momentum equation, P ,  (i.e. the non-linear portion of E-fricJ at the various 
overtide frequencies. The table indicates that the most significant non-linear continuity equation 
loadings occur at the steady state and M, harmonics. The response in elevation at steady state is 
somewhat larger than that at M,, as can be seen by examining curves 1 in Figures 4(a) and (d). A 
much smaller non-linear forcing occurs at M,, although the effect on the M, response is 
negligible compared with that of the boundary forcing. Finally we note that the forcings and 
associated responses at higher harmonics (M6, M,, Mlo) become increasingly smaller. As was 

Table IV. Basin-averaged harmonic non-linear forcings and responses for M, astro- 
nomical boundary forcing cases for various non-linear interactions (numbers given to two 

significant figures) 

Case Variable Steady M, M4 M6 M8 MlO 

1 P 39 12 62 6.1 0.84 0.12 
P; 0 0 0 0 0 0 
'I 0.037 0.69 0022 0.0016 090017 0000021 

2 5 0 0 0 0 0 0 
lo-' 1650 150 10-7 80 P" 
l o -"  0.69 lo-" 0.035 lo-" 0013 'I 

3 P 0 0 0 0 0 0 
P i  54 1650 61 150 13 79 
'I 0.028 0.69 0,015 0.034 0.0026 0013 

4 P 41 15 60 7.6 6.5 2.6 
P; 150 1640 190 120 50 67 
'I 0.076 0.69 0.047 0.029 0.011 0010 
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noted earlier, this is due to the fact that these higher-order harmonics appear as a result of the 
interaction of weaker overtide responses with the M, constituent or with themselves, resulting in 
progressively rapidly decreasing forcings and associated responses for higher-order harmonics. 
Responses in elevation amplitude and phase for steady through M, are all shown as curves 1 in 
Figure 4. Finally we note that had the linear friction coefficient 1 been specified as zero, then the 
M, response would have increased through the channel without any phase lag. Furthermore, the 
steady-state response would have been zero (due to the phase difference of 7c/2 between elevation 
and velocity responses) and the M, and M, responses would all have been larger due to the 
increased M, amplitudes and would also have no phase lag. 

Case 2. Non-linear friction with nofinite amplitude efects. We now look at the effects of a non- 
linear friction term with no finite amplitude effects in either the continuity or the momentum 
equations. Hence the shallow water equations (1) and (2) are simplified by assuming h + q = h. 
Table IV shows that non-linear forcings for the momentum equation occur at all odd harmonics 
(M,, M,, Mlo,  etc.) and virtually no forcing nor response occurs at the even harmonics (steady, 
M,, Me). This is consistent with the discussion earlier. We note that the even-harmonic forcings 
are within the error level of the LSQ analysis procedure. The major forcing of the non-linear 
friction term with an M, forcing tide is on the M, component itself. Although the channel- 
averaged M, response is the same as Case 1, elevation amplitude and phase are distributed 
somewhat differently, as indicated in Figures 4(b) and (c). If we had applied the purely linear part 
of the iteration procedure to obtain estimates for 1 in Case 1, the M, response for Case 1 would 
have been essentially the same as for Case 2. 

The forcings and responses at odd overtide frequencies do not diminish as rapidly as in Case 1. 
This is due to the fact that the M, tide is directly forcing (by interacting with itself) all these 
harmonics, as can also be deduced by examining (33). Responses in elevation amplitude and 
phase for Case 2 for the steady through M, components are shown in Figure 4. 

Case 3. Non-linear friction with finite amplitude in the momentum equation only. Case 3 
considers the effect of including finite amplitude in the momentum but not the continuity 
equation. Table IV indicates that the forcings and responses at  the odd harmonics have remained 
essentially unchanged compared with Case 2. However, now the finite amplitude part of the 
friction term causes forcings and responses at the even harmonics which are in general smaller 
than those at odd harmonics. Comparing the response at the even harmonics generated due to 
finite amplitude alone (Case l), we note from Table IV that the non-linear friction terms generate 
a smaller response at steady and M, than the continuity finite amplitude term, but generate a 
larger response at M, (and M,,, etc.). This is again due to the fact that it is the M, tide that is 
responsible for the simultaneous forcing of the even harmonics in the case of the friction term with 
finite amplitude effects included. Responses in elevation for the various frequencies are shown and 
compared with the other cases in Figure 4. 

Case 4.  Non-linear friction and non-linearfinite amplitude. Case 4 examines the effect of non- 
linear friction in addition to finite amplitude in both the momentum and continuity equations. 
We note from Table IV that the averaged non-linear forcings for the continuity equation, P,,, are 
similar to the case of finite amplitude alone (Case 1) for steady through M, and much greater for 
M, and Mlo .  This redistribution of non-linear forcings is explained by the fact that the M, 
response for Case 4 is an order of magnitude larger than for Case 1 due to non-linear friction. This 
results in increased forcing i', at M,. The same holds true for P,, at Ml0.  Furthermore, non-linear 
forcings for the momentum equation have significantly increased at the even harmonics and have 
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been reduced at the odd harmonics. This is due to the reinforcing of continuity finite amplitude 
and momentum friction effects at even harmonics. The increased responses at these harmonics in 
turn increase the frictional loadings at the harmonics themselves. A reduction in the M, and odd- 
harmonic momentum non-linear loadings is brought about by a finite amplitude forcing which is 
partially out of phase from the frictional forcing (see Figure 4(g) to deduce this). Together with a 
small increase in P,, at M,, this reduces the MCj response and momentum non-linear forcings. The 
redistribution of non-linear forcings described leads to significantly increased responses at steady, 
M, and M, while causing reduced responses at  M, and MI,,. The response at M, remains 
virtually unchanged. Elevation responses for Case 4 are shown together with results for Cases 1-3 
in Figure 4 for the steady through M, constituents. 

M ,  and N2 astronomical boundary forcing 

We now examine the non-linear interactions brought about by two astronomical boundary 
forcing tides. The astronomical forcing constituents selected are the dominant M, tide, forcing the 
open ocean boundary with an amplitude of 1 m, and the N, tide, forcing the open ocean 
boundary with an amplitude of 0.25 m out of phase with respect to the M, by 5.934 rad (i.e. 
lagging the M, by almost a full cycle). The overtides and compound tides and their associated 
frequencies that will be generated through the non-linearities with this M,-N, interaction are 
listed in Table V. The LSQ harmonic analysis is now applied using the frequencies listed and 97 
time sampling points spaced at 13.70196 hours. Thus the sampling period is slightly greater than 
twice the modulating period for the frequencies under consideration. The minimum diagonal 
dominance ratio in the LSQ submatrices is 12.8 and the average diagonal dominance is 22.5, while 

Table V. List of frequencies used for M,-N, compound tide cases 
(Case 5) 

Synodic period 
Tide Frequency (rad s - ' )  Period (h) (days) 

000000000000 
000000263920 
000000527840 
0.000 1352405 1 
00001378797 1 
00001405 189 1 
0.0001 43 158 12 
0.000273 12022 
000027575942 
0.00027839863 
000028 103783 
000028367703 
00004 13639 14 
000041627834 
000041891754 
000042 155675 
0,00055 15 1885 
0.00055415805 
000055679726 
000055943646 
000056207566 
000070259459 

- 
661.31 
330.65 

12.9 1 
12.66 
12.42 
12.19 
6.39 
6.33 
6.27 
6.2 1 
6.15 
4.22 
4.19 
4.17 
4.14 
3.16 
3.15 
3.13 
3.12 
3.1 1 
2.48 

0.00 
27.55 
0.56 

27.55 
27.55 
27.55 
0.56 

27.55 
27.55 
27.55 
27.55 
056 

27.55 
27.55 
27.55 
0.56 

27.55 
27.55 
27.55 
2755 
0.52 
__ 
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individual diagonal to off-diagonal term ratios are about five times greater. The resulting error in 
the harmonic analysis is less than 1 YO for all significant constituents. Significant constituents for 
this case were the steady, MN, N,, M,, 2MN,, MN,, M,, 2MN,, M,, 3MN,, M, and M,, 
constituents. Other constituents were found to have comparatively small non-linear forcing 
amplitudes and responses. 

For this compound tide case (Case 5) finite amplitude and non-linear friction were included. A 
comparison of basin-averaged non-linear loadings and elevation responses is shown in Table VI. 
It is noted that forcings and responses for the steady, M, and M, are very close to those of Case 4. 
A slight increase in response for the steady and a slight decrease for M, and M, are indicated in 
Figures 5(a), (d) and (g), which compare elevation amplitudes for Cases 4 and 5. However, 
Table VI and Figure 5(i) indicate that a much more significant reduction is brought about in the 
M, forcings and responses. 

Compound tidal components listed in Table VI generally exhibited a response of about 50% of 
that of the adjacent overtide response. Figure 5 indicates that the elevation amplitude response 
curves of the compound tides show similar form to the adjacent overtides (steady and MN; M, 
and MN,; MN, and M,). Furthermore, elevation phases for adjacent components were very 
similar. 

Convergence and noise 

Convergence was quite rapid in all the cases described. With the exception of Case 1, all cases 
first performed five purely linear cycles, involving only the M, tide, to compute nodal I values 
such that Iz  closely approximates the harmonic non-linear friction forcing at M, . At the end of the 
fifth cycle 1 values were relaxed by multiplying them by 1.5. For all cases the M, amplitudes of 
elevation and velocity had converged to less than 1% relative change (the average difference 
between nodal values at two consecutive cycles divided by the average nodal value of the variable 
at the updated cycle) by the third fully non-linear cycle and all overtide and compound tides with 
significant computed responses had converged to better than 1% by the end of the seventh or 
eighth fully non-linear cycle. This convergence was more progressive (i.e. M, converged at cycle 5, 
M, at cycle 6, etc.) for Case 1 than for cases which included friction owing to the nature of the 
energy transfer mechanisms and the amount of energy transferred back to other non-linear 
forcing tides. 

The extent of nodal oscillations increased as energy was spread to higher-order harmonics. The 
nodal oscillations were markedly the worst at very high harmonics for Case 1 due to the finite 
amplitude term. They were the best for Cases 2 and 3 with only the friction term being involved in 
the computations. Furthermore, in these cases the nodal oscillations increased at a much slower 

Table VI. Basin-averaged harmonic non-linear-forcings and responses for M, and M,-N, astronomical 
boundary forcings and full non-linear interaction (numbers given to two significant figures) 

Case Variable Steady MN N, M, 2MN2 MN, M, 2MN, M, 

- - - - 7.6 
120 

- 60 4 P 41 15 
- - - 190 - rs"u 150 1640 - 

- - - ii 0.076 - 0.69 0.041 - 0.029 

5 P 42 17 6.8 16 3.0 26 58 4.8 7.1 
P; 160 79 420 1630 42 94 190 45 110 
ii 0.079 0.041 0.14 0.68 0.025 0.021 0.046 0.011 0024 
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(i) M, amplitude 

rate for the higher-order harmonics than for Case 1. Case4 with both finite amplitude and 
friction terms has oscillations characterized by features of both Cases 1 and 3. The M, tide for 
Case 4 has a maximum cross-channel relative oscillation in elevation amplitude (cross-channel 
change divided by elevation values) of 0.04% with a channel-averaged value of 0002Y0, while the 
shallow water constituents typically had a maximum cross-channel oscillation of about 3 YO with 
a channel average of the order of 0.1%. For Case 5 the oscillations in the compound tides were 
slightly greater than in the corresponding adjacent overtides. 

Summary 

In summary we note that the compound tides are very significant in non-linear shallow water 
tidal dynamics in terms of their magnitude relative to adjacent overtides and also due to their 
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effect on certain overtides (e.g. reduction in M6). Of further interest is that long-period responses 
are generated both due to overtide type interactions and compound tide type interactions. In 
particular a significant steady-state set-up is generated which is of the same order of importance 
as other overtide constituents. Associated with this steady-state set-up are significant outward 
steady velocities (in amplitude about 8% of maximum M, velocity responses) in the front portion 
of the bay. Furthermore, a long-term-varying MN response with a period of 27.55 days causes a 
slowly oscillating current which has a peak velocity of about half the steady-state velocity 
response. Steady-state and other long-term-varying residual tidal circulations will certainly be 
important for drift velocity and pollutant transport computations. 

Finally we note that the overtides of the N, tide were insignificant. The order of importance of 
the shallow water tides for this case is first the overtides of the M, tide, then the compound tides 
due to the M,-N, interaction and finally the N, overtides. This is due to the fact that the 
strongest interactions are represented by the M, interacting with itself through the non-linearities 
and then the major M, interacting with other astronomical and shallow water constituents. The 
interaction of N, with itself is not significant. 

CONCLUSION 

The development of TEA-NL has generated a powerful tool which allows the general investi- 
gation of non-linear shallow water tidal dynamics. The iterative nature of the scheme in 
conjunction with the use of the harmonic least-squares analysis method makes TEA-NL entirely 
general in the sense that any tidal constituent can be examined and furthermore in that we do not 
establish a priori the importance of the various non-linear interactions as a perturbation scheme 
would. The simulation of tidal flows in estuaries is quite straightforward and the computation of 
long-term residual circulations is accomplished simply by studying the low-frequency end of the 
response spectrum. 

TEA-NL incorporates a variety of unique features which include: 

(i) A finite element harmonic solution based on the primitive equations which exhibits low 
spurious spatial oscillations. We note that it is crucial to minimize the spatial noise since 
high noise/signal ratios would not allow for the correct computation of the non-linear 
forcings and the solutions at higher-order harmonics would degrade rapidly. The PPWE 
scheme used to solve the linear harmonic equation in TEA-NL, however, shows excellent 
control on spatial noise and thus allows for the accurate study of quite high-order 
harmonics in the shallow water spectrum which have very small responses. 

(ii) A least-squares harmonic analysis procedure which readily allows for the harmonic 
decomposition of signals with closely and unevenly spaced energy in a very economical 
fashion. Owing to the flexibility we have in analytically generating the required time 
history signals, we have tailored the least -squares procedure such that we are typically able 
to reduce the number of required time history points by several orders of magnitude when 
compared with standard least-squares procedures. In general the least-squares method 
allows for the forthright inclusion of compound tides which as we have noted are very 
important to the shallow water tidal dynamics of an estuary. Compound tides influence 
the M, overtides and furthermore their associated responses are significant relative to the 
adjacent M, overtides. 
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(iii) The components of the harmonic iterative type procedure show a high degree of parallel- 
ism and therefore make TEA-NL ideally suited for implementation on the emerging new 
generation of parallel processing supercomputers. All the CPU time intensive compu- 
tations for this scheme are extremely amenable to parallel processing. For a typical field 
application the generation of the time history response is the most CPU time intensive. 
This is followed by the linear core solution at all N, frequencies. The LSQ harmonic 
analysis and the generation of the time history loading from the time history response are 
significantly less CPU intensive. As is indicated in Figure 2, all of these components of 
TEA-NL can be processed in a parallel fashion either on a frequency basis or on a nodal 
basis, leading to significant increases in computational efficiency. In addition the use of 
supercomputers with a significantly larger virtual memory will increase the efficiency of 
TEA-NL in that there will no longer be a need to reset and resolve the system matrices for 
each frequency beyond the first fully non-linear iteration. 

A detailed field application to the Bight of Abaco, Bahamas, will be presented in a subsequent 
paper. 
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